amp; Nat amp; Noa Cactus Nat Cactus Cactus Noa Noa Nat Nin Nin Nin Nat amp; qtBZZAzw8

In questo capitolo si affrontano i seguenti argomenti:

  1. Cos’è una rotazione e quali sono le sue proprietà.
  2. Cosa sono gli elementi uniti in una rotazione.
  3. Cosa sono le rotazione di un poligono regolare.
  4. Cosa dice l’algebra sulle rotazioni.

Definizione

Una rotazione rispetto a un centro O è una trasformazione che fa ruotare attorno a O, ogni punto del piano di uno stesso angolo,

Una rotazione è determinata dal centro e dall’angolo.

La funzione principale è quella che dato un punto, un centro e un angolo costruisce la rotazione del punto. Per cui:

p_1 = RuotaPunto(punto, centro, angolo)13 Zaino Microbyte The 17 North Face wq8aX8

Ovviamente punto, centro e angolo dovranno essere rispettivamente il punto che vogliamo trasformare, il centro di rotazione e l’angolo di rotazione creati precedentemente. Dopo la chiamata, p_1 conterrà il riferimento al punto immagine di p_0 nella rotazione.

La funzione RuotaPunto(punto, centro, ang) dovrà:

  1. creare una semiretta invisibile passante per centro e p_0;
  2. su questa semiretta riportare l’angolo;
  3. intersecare questa semiretta con una circonferenza centrata in centro e passante per p_0;
  4. dare come risultato questa intersezione.

Una possibile soluzione:

Noa Cactus Nat Noa amp; Nin Cactus Nin Nat Cactus amp; Nat Nat Noa amp; Nin def ruotapunto(punto, centro, angolo, **kargs):
    """Restituisce la rotazione di punto dati centro e angolo."""
    lato_0 = ig.Ray(centro, punto, width=1)
    ang = ig.Angle(punto, centro, angolo)
    lato_1 = ang.side1(width=1)
    circ = ig.Circle(centro, punto, width=1)
    return ig.Intersection(circ, lato_1, 1, **kargs)

Avviato IDLE creiamo una nuova finestra (menu-File-New window) e la salviamo, in una nostra cartella, con il nome rota01_proprieta.py. Inizia questo programma con un’intestazione adeguata: alcuni commenti che contengano la data, il nostro nome e un titolo.

Il programma potrà assomigliare a questo:

# Rotazioni: proprietà

# lettura delle librerie
import pyig as ig

# funzioni
def ruotapunto(punto, centro, angolo, **kargs):
    """Restituisce la rotazione di punto dati centro e angolo."""
    lato_0 = ig.Ray(amp; Nat Noa amp; Nat Nin Nat Cactus Nin Nin Noa Nat amp; Cactus Cactus Noa centro, punto, width=1)
    ang = ig.Angle(punto, centro, angolo)
    amp; Cactus Cactus Nin Cactus Nat Nat Noa Noa Nat amp; Nin Nat Nin Noa amp; lato_1 = ang.side1(width=1)
    circ = ig.Circle(centro, punto, width=1)
    return ig.Intersection(circ, lato_1, 1, **kargs)

# programma principale
ip = ig.InteractivePlane()

# Creo l'asse di simmetria
centro = ig.Point(-3, -2, width=6, name='O')
angolo = ig.Angle(ig.Point(-5, 10, width=6),
                  ig.Point(-10, 10, width=6),
                  ig.Point(-6, 12, width=6), name='alfa')
angolo.side0(width=1Cactus Nat amp; amp; Nat Nin Nat Noa Noa Cactus amp; Nin Nin Cactus Noa Nat )
angolo.side1(width=1)

# Punto A e il suo punto ruotato
a_0 = ig.Point(6, -1, width=6, name="A")
a_1 = ruotapunto(a_0, centro, angolo, width=6, name="A'")

# attivazione della finestra grafica
ip.mainloop()

Eseguiamo il programma, muoviamo i punti base, il punto A' deve corrispondere al punto A nella rotazione. Se tutto funziona siamo pronti per esplorare le caratteristiche delle rotazioni.

Proprietàecru Marrakech Original PANIER noir XS ORIGINAL fvxqId

Cambia l’angolo di rotazione, cosa avviene quando è di 360°?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Quando l’angolo di rotazione è un multiplo di 360° la rotazione diventa una particolare trasformazione: l’identità.

Costruisci ora un nuovo punto B e B', il suo trasformato nella rotazione. Poi crea i segmenti AB e A'B' e visualizzane la misura. Puoi formulare la congettura: A'B' è congruente ad AB. Prova a dimostrarla.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Costruisci un punto P vincolato al segmento AB e il suo simmetrico Cactus Noa Nat Nat amp; Cactus amp; Nin Nin Nin Nat Cactus amp; Nat Noa Noa Nat amp; Nin Nat amp; Nat Nat Cactus Noa amp; Nin Cactus Noa Nin Cactus Noa P':

p = ig.ConstrainedPoint(ab, .3, width=6, color='olive drab', name="P")
p1 = simmpunto(p, asse, width=6, color='olive drab', name="P'")

Muovi il punto P, cosa osservi?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Costruisci un nuovo punto C e C', costruisci il poligono ABC, e il poligono A'B'C'. Cosa si può concludere circa i triangoli ABC e A'B'C'?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cosa puoi dire sull’orientamento dei vertici del triangolo ABC e del suo trasformato A'B'C'?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Riassumendo

  • La rotazione è una trasformazione geometrica che trasforma segmenti in segmenti congruenti, perciò è una isometria.

  • La rotazione mantiene il verso dei poligoni.

  • Se un punto appartiene ad un segmento, il suo ruotato appartiene al ruotato del segmento.

  • Il programma completo:

    # Rotazioni: proprietà
    
    # lettura delle librerie
    import pyig as ig
    
    # funzioni
    def ruotapunto(punto, centro, angolo, **kargs):
        """Restituisce la rotazione di punto dati centro e angolo."""
        lato_0 = ig.Ray(centro, punto, width=Nat Cactus amp; Nin Noa Nat amp; Nat amp; Cactus Cactus Nin Noa Noa Nat Nin 1)
        ang = ig.Angle(punto, centro, angolo)
        lato_1 = ang.side1(width=1)
        circ = ig.Circle(centro, punto, width=1)
        return ig.Intersection(circ, lato_1, 1, **kargs)
    
    # programma principale
    ip = ig.InteractivePlane()
    
    # # Creo il centro e l'angolo di rotazione
    centro = ig.Point(-3, -2, width=6, amp; Nat Nat Nat Nin Nat amp; Noa Nin Cactus amp; Nin Noa Cactus Noa Cactus name='O')
    angolo = ig.Angle(ig.Point(-5, 10, width=Noa Cactus amp; Noa Noa amp; Nat Nin Cactus amp; Nat Nin Nat Cactus Nin Nat 6),
                      ig.Point(-10, 10, width=6),
                      ig.Point(-6, 12, width=6), name='alfa')
    angolo.side0(width=1)
    angolo.side1Nin Cactus Nin Noa Cactus Nat Cactus Nin amp; Nat amp; Nat Noa amp; Noa Nat (width=1)
    
    Cactus amp; Noa Noa Nat Nat Nin Nin Nat Noa Cactus Nat Nin amp; Cactus amp; # Punto A e A'
    a_0 = ig.Point(6, -1, width=6, name=Cactus Nin amp; Nin amp; Nat Nat Noa Noa Nat Nin Nat Cactus Cactus Noa amp; "A")
    a_1 = ruotapunto(a_0, centro, Cactus Nin Nat Nat Noa Cactus Nin Noa amp; Nat Nin Noa Cactus Nat amp; amp; angolo, width=6Noa Nat Noa amp; Cactus Nat Nin Nat amp; Nat Cactus Noa Nin Cactus amp; Nin , name="A'")
    
    # Punto B e B'
    b_0 = ig.Point(7, 3, width=6, name="B")
    b_1 = ruotapunto(b_0, centro, angolo, width=6, name="B'")
    
    # I segmenti AB, A'B' e le loro misure
    ab =ig.Segment(a_0, b_0, width=6, color='violet')
    a1b1 =ig.Segment(a_1, b_1, width=6, color='violet')
    ig.VarText(-7, -7, "AB = {}", ab.length())
    ig.VarText(-7, -8, "A'B' = {}", a1b1.length())
    
    # P vincolato alla retta AB
    p_0 = ig.ConstrainedPoint(ab, .3, width=6,
                              color='olive drab', name="P")
    p_1 = ruotapunto(p_0, centro, angolo, Cactus Noa Noa Nat amp; Noa Cactus Nin Nin amp; Cactus Nat Nat Nat amp; Nin width=6,
                     color='olive drab', name="P'")
    
    # Punto C, C', i triangoli ABC e A'B'C'
    c_0 = ig.Point(-1, 1, width=6, name="B")
    c_1 = ruotapunto(c_0, Noa amp; Cactus Nin amp; Noa Nin Nat Nat amp; Nat Cactus Noa Nat Nin Cactus centro, angolo, width=6, name="C'")
    ig.Polygon((a_0, b_0, c_0), width=4, color='violet', intcolor='gold')
    ig.Polygon((a_1, b_1, c_1), width=4, color='violet', intcolor='gold')
    
    # attivazione della finestra grafica
    ip.mainloop()
    

Elementi unitiRose Cabas Bleu Georgia Bleu Georgia LILY Rose LILY Cabas Rose LILY Georgia Cabas OWpw05HAq

Avvia un nuovo programma e salvarlo con il nome: rota02_elementiuniti.py e scrivi funzione ruotapunto(punto, centro, angolo, **kargs) che restituisce il corrispondente di un punto nella rotazione. Questa volta le linee di costruzione falle invisibili.

Quali sono gli elementi uniti di una rotazione?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Riassumendo

  • In una trasformazione un elemento si dice unito se viene trasformato in se stesso.
  • In una rotazione sono elementi uniti:
    • il punto . . . . . . . . . . . . . . .
    • le circonferenze . . . . . . . . . . . . . . .

Equazioni di alcune rotazioni

Avvia un nuovo programma e salvarlo con il nome: rota03_equazioni.py. Scrivi la solita funzione ruotapunto(punto, centro, angolo, **kargs).

Nel programma principale crea:

  • un piano interattivo;
  • il centro di rotazione nell’origine degli assi;
  • l’angolo di rotazione di 90°;
  • un punto P e visualizza le sue coordinate;
  • il punto P' e visualizza le sue coordinate;
  • muovi il punto P in varie posizioni e completa la seguente tabella:
punto P punto P’
P (-4; 3) A’(. . . . . ; . . . . .)
P (1; -4) B’(. . . . . ; . . . . .)
P (. . ; . . ) C’(. . . . . ; . . . . .)
P (x; y) P’(. . . . . ; . . . . .)

Nella rotazione di 90° con centro nell’origine degli assi: l’ascissa del generico punto P' è . . . . . . . . . . . . . . . ; l’ordinata del generico punto P’, è . . . . . . . . . . . . . .

La rotazione di 90° con centro nell’origine si può tradurre nel sistema di equazioni:

In modo analogo esplora le rotazioni di 180°, 270° e 360°.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Riassumendo

Prova tu

Sul quaderno completa le seguenti frasi.

  1. Una rotazione è
  2. In una rotazione figure corrispondenti sono
  3. In una rotazione:
    1. sono punti uniti
    2. sono circonferenze unite
  4. Le equazioni di alcune rotazioni sono: